
SAL

2/28/2013 System Architectures Laboratory 1

Temporal Programmer:

 An Introduction

SAL

Abbas K. Zaidi

Alexander H. Levis

<szaidi2>, <alevis>@gmu.edu

Adversary Behavioral Modeling

Maxwell AFB, Montgomery AL

March 8 – 9, 2007

SAL

System Architectures Laboratory
2/28/2013

 2

Temper

SAL

System Architectures Laboratory
2/28/2013

 3

Outline

• A Logic for Time

– Point-Interval Logic

– Point Graphs

• Temper – Software Implementation of Point-Interval

Formalism

• Temporal Issues in Forensics

• Example: Applying Temper to London Bombing Data

SAL

System Architectures Laboratory
2/28/2013

 4

• Logic is the “Art of Reasoning”

• Logic is used to make inferences based on the available information

• Formal logic makes inferences based purely on the form of the

content, without any understanding of the meaning of the content

• Reasoning based just on the form is important because this means

computers can do it

• A formal logic for time enables us to:

– Characterize time-sensitive attributes of a domain to be modeled

– Do temporal analysis of a domain, which helps us in developing a

better understanding of the relationship between domain entities

– Identify Inconsistencies and anomalies

 There are approaches that allow explicit representation of time and

reasoning about it. The use of time logics to forensics is proposed.

A Logic for Time

SAL

System Architectures Laboratory
2/28/2013

 5

Interval Logic

• Allen introduced Interval Algebra as a framework for temporal

reasoning. The algebra takes time intervals to be primitives.

There are 13 possible relationships between a pair of intervals:

 R = {before, meets, overlaps, starts, during, finishes, equals,

 after, met-by, started-by, contains, finished-by}

• We add points (intervals of zero length) and expand the set of

relationships to define a Point Interval Logic (PIL)

• Knowledge Representation

– A graph with nodes representing time points and edges

representing the „inequalities‟ captures the information in

PIL statements

SAL

System Architectures Laboratory
2/28/2013

 6

Point Graphs

Point Interval Logic Statements and the corresponding Point Graph

p1 < p2
p2 <= p3

Time Stamp p1 = 4500

Length[p1, p2] = 100

p1 p2

4500

100

Less Than Edge

Interval Length

Time Stamp

 p3

Less or Equal Edge

4600

Inferred Time Stamp: p2 = 4600

Temper Demonstration

Point

Graph

Time

Stamp

LT

Edge Interval

Length

Virtual

Node

LE

Edge

Input

Window

Output

Window

SAL

System Architectures Laboratory
2/28/2013

 8

Temper – The Software

• Temper is a tool for temporal knowledge representation, reasoning, and

planning using Point-Interval Logic (PIL).

• PIL is a formal algebraic framework for reasoning with time. It has the ability to

handle both:

– Events and Activities

– Quantitative and Qualitative temporal relationships

– Reasoning and Planning

• The relationships among various activities and events in a domain are

specified in the form of PIL statements. These statements are converted into a

graphical construct called Point Graphs (PG).

– Algorithms for verification, inference, and planning are implemented on the

Point Graph representation.

• The implementation of PIL is in the form of a .NET class library called PIL

Engine. It provides an application programming interface (API) that can be

used in any .NET compliant programming language. It uses QuickGraph, which

is an open-source C# implementation of the Graphviz library from AT&T.

• Temper provides a graphical user interface (GUI) to PIL Engine.

SAL

System Architectures Laboratory
2/28/2013

 9

Temper

Language

Editor

Query

Editor

SAL

System Architectures Laboratory
2/28/2013

 10

Modeling with Temper

• Convert the available temporal information into statements in

Point-Interval Logic.

• Input these statements to Temper using the language editor of

Temper.

• Construct a Point Graph representation of the set of Point

Interval Logic (PIL) statements.

– If the set of PIL statements is inconsistent then Temper will

not be able to construct the Point Graph representation.

– Temper will identify the subset of PIL statements causing

the inconsistency.

– User will remove the inconsistent statements.

• Once a consistent Point Graph has been constructed, it can be

used to draw inferences.

SAL

System Architectures Laboratory
2/28/2013

 11

Applications

• Knowledge Management and Reasoning

– Forensics

• Understanding of an incident of interest or a critical activity
requires reconstruction of events that lead to an observable
effect

• Information regarding the incident/activity unfolds in no
specific order and originates from different locations

• Temporal information may be both qualitative and quantitative

• Information may be inconsistent/incorrect

• Information may contain hidden patterns or temporal relations
that can help identify missing links

• This calls for an automated tool for temporal knowledge
representation, management, verification and reasoning

• Temper is also the temporal algorithm embedded in Pythia

SAL

System Architectures Laboratory
2/28/2013

 12

Application to Forensics

 London Bombing

 July 07, 2005

SAL

System Architectures Laboratory
2/28/2013

 13

Example:

London Bombing

• There were four explosions in London.

• The sites of these explosions were:
Travistock Square, Edgware Road,
Aldgate and Russell Square.

• Three of these explosions (Edgware,
Aldgate and Russell Square) were in
trains.

• These trains left from King's Cross
station. The journey of these trains
ended in explosions.

• The time it takes a train from King's
Cross to reach Edgware is at least 5
minutes.

• The time it takes a train from King's
Cross to reach Aldgate is at least 4
minutes.

• The time it takes a train from King's
Cross to reach Russell Square is at
least 5 minutes.

PIL

statements

Interval Train_King_Cross_to_Edgware,
Train_King_Cross_to_Aldgate,
Train_King_Cross_to_Russell_Sq

Point Explosion_at_Travistock_Square,
Explosion_near_Edgware,
Explosion_near_Aldgate,
Explosion_near_Russell_Sq

Explosion_near_Edgware finishes
Train_King_Cross_to_Edgware

Explosion_near_Aldgate finishes
Train_King_Cross_to_Aldgate

Explosion_near_Russell_Sq finishes
Train_King_Cross_to_Russell_Sq

Length [Train_King_Cross_to_Edgware] >= 0:5:0

Length [Train_King_Cross_to_Aldgate] >= 0:4:0

Length [Train_King_Cross_to_Russell_Sq] >= 0:5:0

SAL

Point

Graph

PIL

statements

SAL

System Architectures Laboratory
2/28/2013

 15

Example:

London Bombing (cont‟d)

Query Stamp

(when did the train

to Edgware leave

from King’s Cross?)

SAL

System Architectures Laboratory
2/28/2013

 16

Example:

London Bombing (cont‟d)

• The explosion near Edgware Road

took place between time units

8:40 and 8:52.

• The explosion near Aldgate took

place between time units 8:45 and

8:50.

• The explosion near Russell

Square took place between time

units 8:40 and 8:50.

• The explosion at Travistock

Square took place between time

units 9:45 and 9:55.

8:40 <= Stamp [Explosion_near_Edgware] <= 8:52

8:45 <= Stamp [Explosion_near_Aldgate] <= 8:50

8:40 <= Stamp [Explosion_near_Russell_Sq] <= 8:50

9:45 <= Stamp [Explosion_at_Travistock_Square] <= 9:55

PIL

statements

SAL

System Architectures Laboratory
2/28/2013

 19

Example:

London Bombing (cont‟d)

Query Stamp

(when did the train

to Edgware leave

from King’s Cross?)

Adding New Information
Stamp[sTrain_King_Cross_to-Edqware] = 8:48:0

Identified

Inconsistency

On-the-fly

Deletion of a

PIL Statement

SAL

System Architectures Laboratory
2/28/2013

 23

Example:

London Bombing (cont‟d)

• The alleged four bombers spotted
entering the Luton station at time unit
7:20.

• The next train from Luton to King's
Cross left at 7:48 reaching King's
Cross at 8:42.

• Train to Edgware left after the train
from Luton.

• Train to Aldgate left after the train
from Luton.

• Train to Russell Sq. left after the train
from Luton.

PIL

statements

 Interval Train_Luton_to_King_Cross

 Point Bombers_spotted_at_Luton

 Stamp [Bombers_spotted_at_Luton] = 7:20

 Stamp [sTrain_Luton_to_King_Cross] = 7:48

 Stamp [eTrain_Luton_to_King_Cross] = 8:42

 eTrain_Luton_to_King_Cross before

 Train_King_Cross_to_Edgware

 eTrain_Luton_to_King_Cross before

 Train_King_Cross_to_Aldgate

 eTrain_Luton_to_King_Cross before

 Train_King_Cross_to_Russell_Sq

SAL

System Architectures Laboratory
2/28/2013

 25

Example:

London Bombing (cont‟d)

Query Stamp

(when did the train

to Edgware leave

from King’s Cross?)

SAL

System Architectures Laboratory
2/28/2013

 26

Conclusion

• A formal approach to modeling and analyzing temporal information
related to an event of interest, e.g., terrorist acts

• A software implementation of the approach with

– An easy-to-use input language

– Analysis toolkit that includes a consistency checker and a
reasoning tool with a query language/interface

– An efficient revision mechanism that helps add/modify temporal
information without restarting the whole process

– A graphical interface

• What might be added in future

– Connectivity to temporal information in databases

– Automated extraction of temporal information from textual
source(s)

– Better user/analyst input/output interfaces for display of
information (both input and inferred)

SAL

System Architectures Laboratory
2/28/2013

 27

Future Directions

• Integration of the three dimensions of spatial knowledge with the

temporal dimension to create a unified approach for handling change

• Exploring equivalence/overlaps between temporal logic operators

and temporal relations of Temper for enhancements in input/query

languages

• Development or addition of sophisticated GUI for inputs and outputs,

e.g., something similar to WebTAS APIs

